Понятия со словосочетанием «среднее отклонение»
Связанные понятия
Скользя́щая сре́дняя, скользя́щее сре́днее (англ. moving average, MA) — общее название для семейства функций, значения которых в каждой точке определения равны среднему значению исходной функции за предыдущий период.
Погрешность измерения — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
До́пуск — разность между наибольшим и наименьшим предельными значениями параметров (размеров, массовой доли, массы), задаётся на геометрические размеры деталей, механические, физические и химические свойства. Назначается (выбирается) исходя из технологической точности или требований к изделию (продукту). Любое значение параметра, оказывающееся в заданном интервале, является допустимым.
Усечённая регрессия (англ. Truncated regression) или регрессия с урезанной выборкой — модель регрессии в условиях, когда выборка осуществляется только из тех наблюдений, которые, которые удовлетворяют априорным ограничениям, которые обычно формулируются как ограничение снизу и (или) сверху зависимой переменной. Урезание выборки приводит к смещенности МНК -оценок, поэтому оцениваются такие модели с помощью метода максимального правдоподобия.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной...
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Метод парных точек — метод обработки экспериментальных данных, созданный для оценивания значения углового коэффициента зависимости и определения его погрешности. Из экспериментальных точек на графике берутся те, которые находятся друг от друга примерно на одинаковом расстоянии (это расстояние должно быть максимально возможным).
Косинор или косинор-анализ — метод обработки коротких временных, основанный на приближении временного ряда косинусоидой.
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Вероятное (
срединное) отклонение случайной величины, распределённой по нормальному закону — половина участка, симметричного относительно центра рассеивания, вероятность попадания в который равна половине. Эта характеристика рассеивания, наряду со средним квадратическим отклонением, часто используется в ряде областей применения теории вероятностей, в частности в теории стрельбы для артиллерии и стрелкового оружия.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Статистическая мощность в математической статистике — вероятность отклонения основной (или нулевой) гипотезы при проверке статистических гипотез в случае, когда конкурирующая (или альтернативная) гипотеза верна. Чем выше мощность статистического теста, тем меньше вероятность совершить ошибку второго рода. Величина мощности также используется для вычисления размера выборки, необходимой для подтверждения гипотезы с необходимой силой эффекта.
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Тест Бройша — Пагана или Бреуша — Пагана (англ. Breusch-Pagan test) — один из статистических тестов для проверки наличия гетероскедастичности случайных ошибок регрессионной модели. Применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных. При этом в данном тесте проверяется линейная зависимость дисперсии случайных ошибок от некоторого набора переменных.
Т-критерий Вилкоксона — (также используются названия Т-критерий Уилкоксона, критерий Вилкоксона, критерий знаковых рангов Уилкоксона, критерий суммы рангов Уилкоксона) непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных или независимых измерений по уровню какого-либо количественного признака, измеренного в непрерывной или в порядковой шкале.. Впервые предложен Фрэнком Уилкоксоном. Другие названия — W-критерий Вилкоксона, критерий знаковых...
Подробнее: Критерий Уилкоксона
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
Коэффицие́нт сдви́га — это параметр вероятностного распределения, имеющий специальный вид. Физически конкретное значение данного параметра может быть связано с выбором точки отсчёта шкалы измерения.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Авторегрессионная условная гетероскедастичность (англ. ARCH; AutoRegressive Conditional Heteroscedasticity) — применяемая в эконометрике модель для анализа временных рядов (в первую очередь финансовых), у которых условная (по прошлым значениям ряда) дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время...
Модель упорядоченного выбора (упорядоченная регрессия, англ. ordered choice) — применяемая в эконометрике модель с упорядоченной (с ранжированными значениями) дискретной зависимой переменной, в качестве которой могут выступать, например, оценки чего-либо по пятибалльной шкале, рейтинги компаний и т. д. В рамках данной модели предполагается, что количество значений зависимой переменной конечно.
Складной нож (англ. jackknife) — один из методов ресэмплинга (линейное приближением статистического бутстрэпа), используемый для оценки погрешности в статистическом выводе. Способ заключается в следующем: для каждого элемента вычисляется среднее значение выборки без учёта данного элемента, а затем — среднее всех таких значений. Для выборки из N элементов оценка получается путём вычисления среднего значения остальных N-1 элементов.
Логарифмический масштаб (шкала) — шкала, длина отрезка которой пропорциональна логарифму отношения величин, отмеченных на концах этого отрезка, в то время как на шкале в линейном масштабе длина отрезка пропорциональна разности величин на его концах.
Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания...
Стохасти́ческий осциллятор (стоха́стик, стоха́стика от англ. stochastic oscillator) — индикатор технического анализа, который показывает положение текущей цены относительно диапазона цен за определенный период в прошлом. Измеряется в процентах.
Параметр — это обобщенное название определенного физического, геометрического или иного свойства устройства (процесса). Это могут быть, например, размер, скорость, напряжение и т. д.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Кругово́е вероя́тное отклоне́ние (КВО) — показатель точности попадания бомбы, ракеты, снаряда, применяемый для оценки вероятности поражения цели. Круговое рассеивание является частным случаем более общего понятия вероятного или срединного отклонения, широко используемого в артиллерийской практике и баллистике с XIX века.
Вариа́ция — различие значений какого-либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия существования разных единиц совокупности. Вариация — необходимое условие существования и развития массовых явлений.
Поляра — графическая зависимость коэффициента подъёмной силы от коэффициента лобового сопротивления при различных углах атаки. Каждая точка кривой соответствует определённому углу атаки, который часто обозначается на графике в виде параметра.
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Кванти́ли распределе́ния Стью́дента (коэффициенты Стьюдента) — числовые характеристики, широко используемые в задачах математической статистики, таких как построение доверительных интервалов и проверка статистических гипотез.
Модель исправления (коррекции) ошибок (англ. ECM, Error Correction Model) — модель временных рядов, в которой краткосрочная динамика корректируется в зависимости от отклонения от долгосрочной зависимости между переменными. В виде ECM формально можно представить любую модель авторегрессии и распределенного лага (ADL). Однако особо важный смысл это представление имеет для интегрированных временных рядов и тесно связано с понятием коинтеграции. Механизм коррекции ошибок обеспечивает выполнение долгосрочной...
Схема предиктор-корректор (метод прогноза и коррекции, предсказывающе-исправляющий метод) — в вычислительной математике — семейство алгоритмов численного решения различных задач, которые состоят из двух шагов. На первом шаге (предиктор) вычисляется грубое приближение требуемой величины. На втором шаге при помощи иного метода приближение уточняется (корректируется).
Приведённая длина́ — величина, измеряемая в единицах длины и условно вводимая для описания физического объекта в тех или иных задачах, но, возможно, не связанная напрямую с его размером. Чаще всего используется применительно к физическому маятнику.
Э́ллипс рассе́ивания — условная замкнутая кривая, описанная вокруг точек падения снарядов, выпущенных из одного орудия в максимально возможных одинаковых условиях. Данное явление вызывается рассеиванием и в общем случае подчиняется законам нормального распределения.
Мнимая точность, также ложная, кажущаяся, избыточная то́чность (англ. spurious accuracy) — ошибка мнения о точности данных, возникающая на основании представления данных в более точном виде, чем известно об их точности.
Выпуклость — характеристика денежного потока облигации, являющаяся мерой чувствительности его дюрации к процентным ставкам.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Статистический параметр или параметр совокупности — это величина, которая индексирует семейство распределений вероятностей. Его можно расценивать как числовую характеристику совокупности или статистической модели.